Freshwater outflow of the Baltic Sea and transport in the Norwegian Current: A statistical correlation analysis based on a numerical experiment

R. Hordoir, C. Dieterich, C. Basu, H. Dietze & M. Meier

Baltex Conference, Öland, June 10th 2013

Outline

- What is the purpose?
- What is the method
- ⁽³⁾ Reconstruction of the BS outflow
- *Reconstruction of the NCC freshwater transport*
 - Only based on wind data
 - Based on wind & salinity data

6 Conclusion

イロト イポト イラト イラト

э

Purpose

Outline

What is the purpose?

- (3) Reconstruction of the BS outflow

Only based on wind data

• Based on wind & salinity data

イロト イポト イラト イラト

E

Purpose

6.00 8.00

• The BS freshwater outflow is poorly described in many climate & operational models for which the BS is considered as a river

10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00

Hordoir et al

Freshwater outflow of the BS, transport in the NCC

< □ > < □ > < □ > < □ > < □ >

590

E

Purpose

6.00 8.00

10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00

- The BS freshwater outflow is poorly described in many climate & operational models for which the BS is considered as a river
- The NCC freshwater transport is also important for Arctic freshwater content

イロト イポト イラト イラト

э

Purpose

6.00 8.00

10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00

- The BS freshwater outflow is poorly described in many climate & operational models for which the BS is considered as a river
- The NCC freshwater transport is also important for Arctic freshwater content
- Is there an easy way to estimate their variability ?

イロト イポト イラト イラト

Sac

Framework

• The BS freshwater outflow has little correlation with runoff in the BS

<ロト < 回ト < 回ト < 回ト < 回ト = 三日

590

6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00

Hordoir et al. Freshwater outflow of the BS, transport in the NCC

Framework

6.00 8.00

10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00

- The BS freshwater outflow has little correlation with runoff in the BS
- The BS freshwater outflow is mostly correlated with mean zonal wind variability *Hordoir & Meier*, *JGR*, 2009

< □ > < □ > < □ > < □ > < □ >

3

Framework

10.00

12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00

- The BS freshwater outflow has little correlation with runoff in the BS
- The BS freshwater outflow is mostly correlated with mean zonal wind variability *Hordoir & Meier*, *JGR*, 2009
- So there must be a way to estimate this flow based only on wind data, and perhaps even estimate that of the NCC

イロト イポト イラト イラト

Outline

What is the method

3 Reconstruction of the BS outflow

Reconstruction of the NCC freshwater transport
 Only based on wind data

• Based on wind & salinity data

5 Conclusion

イロト イポト イラト イラト

E

BaltiX - Domain & Forcing

• Ocean modelling configuration based on the NEMO ocean engine

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ � � �

Hordoir et al. Freshwater outflow of the BS, transport in the NCC

BaltiX - Domain & Forcing

• Ocean modelling configuration based on the NEMO ocean engine

Sac

• NEMO 3.3.1 for the time being

Hordoir et al. Freshwater outflow of the BS, transport in the NCC

BaltiX - Domain & Forcing

- Ocean modelling configuration based on the NEMO ocean engine
- NEMO 3.3.1 for the time being
- Geographical grid, approx. 2nm resolution, 56 vertical levels, 3m resolution at the surface

イロト イポト イヨト イヨト

3

BaltiX - Domain & Forcing

- Ocean modelling configuration based on the NEMO ocean engine
- NEMO 3.3.1 for the time being
- Geographical grid, approx. 2nm resolution, 56 vertical levels, 3m resolution at the surface
- RCA3 re-analysis (Zoom on Europe with ERA40 at the OBCs), 3 hour frequency, 1961-2009

イロト イボト イヨト イヨト

BaltiX - Domain & Forcing

- Ocean modelling configuration based on the NEMO ocean engine
- NEMO 3.3.1 for the time being
- Geographical grid, approx. 2nm resolution, 56 vertical levels, 3m resolution at the surface
- RCA3 re-analysis (Zoom on Europe with ERA40 at the OBCs), 3 hour frequency, 1961-2009
- 31 rivers with inter-annual variability in the Baltic Sea, climatology in the North Sea with salinity of 10⁻³ PSU

イロト イポト イヨト イヨト

BaltiX - Options

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00 450.00 500.00 550.00 600.00 650.00 700.00

• Fully non-linear free surface, $k - \epsilon$ vertical turbulence

Hordoir et al. Freshwater outflow of the BS, transport in the NCC

BaltiX - Options

• Fully non-linear free surface, $k - \epsilon$ vertical turbulence

・ロト ・ 四ト ・ ヨト ・ ヨト - ヨー

SQ P

 Isopycnal diffusion, BBL parameterisation, partial steps, LIM3

Hordoir et al. Freshwater outflow of the BS, transport in the NCC

BaltiX - Options

- Fully non-linear free surface, $k \epsilon$ vertical turbulence
- Isopycnal diffusion, BBL parameterisation, partial steps, LIM3
- TVD scheme, time step of 360s, time splitting

Da C

BaltiX - Options

- Fully non-linear free surface, $k \epsilon$ vertical turbulence
- Isopycnal diffusion, BBL parameterisation, partial steps, LIM3
- TVD scheme, time step of 360s, time splitting

イロト 不得下 イヨト イヨト 二日

Sar

• Validation done on SSH, thermo-haline structure

BaltiX - Diagnostics

• Monitoring of the volumic/salt fluxes at the BS exit and along the Norwegian coast

<日 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

590

Hordoir et al. Freshwater outflow of the BS, transport in the NCC

BaltiX - Diagnostics

- Monitoring of the volumic/salt fluxes at the BS exit and along the Norwegian coast
- Monitoring of the wind along the Norwegian coast, in Skaggerak, Kattegat and the BS

・ロト ・回ト ・ヨト ・ヨト

Sac

3

Hordoir et al. Freshwater outflow of the BS, transport in the NCC

BaltiX - Diagnostics

- Monitoring of the volumic/salt fluxes at the BS exit and along the Norwegian coast
- Monitoring of the wind along the Norwegian coast, in Skaggerak, Kattegat and the BS

Sar

• Monitoring of SSS along the Norwegian coast

Outline

What is the method

3 Reconstruction of the BS outflow

Reconstruction of the NCC freshwater transport

- Only based on wind data
- Based on wind & salinity data

5 Conclusion

イロト イポト イラト イラト

E

BS outflow reconstruction

$$\begin{aligned} Fr_{Baltic}(t) &= \alpha_0 \\ &+ \alpha_{Baltic_1} U_{Baltic}(t - \tau_{Baltic_1}) + \alpha_{Baltic_2} U_{Baltic}(t - \tau_{Baltic_2}) \\ &+ \alpha_{Kattgt_1} U_{Kattgt}(t - \tau_{Kattgt_1}) + \alpha_{Kattgt_2} U_{Kattgt}(t - \tau_{Kattgt_2})(1) \end{aligned}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト

王

BS outflow reconstruction

$$\begin{aligned} Fr_{Baltic}(t) &= \alpha_0 \\ &+ \alpha_{Baltic_1} U_{Baltic}(t - \tau_{Baltic_1}) + \alpha_{Baltic_2} U_{Baltic}(t - \tau_{Baltic_2}) \\ &+ \alpha_{Kattgt_1} U_{Kattgt}(t - \tau_{Kattgt_1}) + \alpha_{Kattgt_2} U_{Kattgt}(t - \tau_{Kattgt_2})(1) \end{aligned}$$

• A simple regression analysis allows to find the proper delays, and the coefficients. The correlation reaches 70% using 2-daily averaged data, but too low variability (33683 $m^3.s^{-1}$ for reconstruction against 48033 $m^3.s^{-1}$ for measured signal)

イロト 不得下 イヨト イヨト 二日

Sac

BS outflow reconstruction

$$\begin{aligned} Fr_{Baltic}(t) &= \alpha_0 \\ &+ \alpha_{Baltic_1} U_{Baltic}(t - \tau_{Baltic_1}) + \alpha_{Baltic_2} U_{Baltic}(t - \tau_{Baltic_2}) \\ &+ \alpha_{Kattgt_1} U_{Kattgt}(t - \tau_{Kattgt_1}) + \alpha_{Kattgt_2} U_{Kattgt}(t - \tau_{Kattgt_2})(1) \end{aligned}$$

- A simple regression analysis allows to find the proper delays, and the coefficients. The correlation reaches 70% using 2-daily averaged data, but too low variability (33683 $m^3.s^{-1}$ for reconstruction against 48033 $m^3.s^{-1}$ for measured signal)
- Using monthly mean data provides a correlation of 80% and similar variability

▲ロト ▲母 ト ▲ ヨ ト → ヨ → の 0 0

Only based on wind data Based on wind & salinity data

Outline

2 What is the method

3 Reconstruction of the BS outflow

Reconstruction of the NCC freshwater transport

- Only based on wind data
- Based on wind & salinity data

5 Conclusion

イロト イポト イラト イラト

э

$$Fr_{Norwg}(t) = \alpha_{0} + \alpha_{Baltic_{1}} U_{Baltic}(t - \tau_{Baltic_{1}}) + \alpha_{Kattgt_{1}} U_{Kattgt}(t - \tau_{Kattgt_{1}}) + \alpha_{Norweg_{1}} U_{Norweg}(t - \tau_{Norweg_{1}}) + \alpha_{Norweg_{2}} V_{Norweg}(t - \tau_{Norweg_{2}})$$
(2)

Hordoir et al. Freshwater outflow of the BS, transport in the NCC

シック・ 川 ・山・山・山・山・

$$Fr_{Norwg}(t) = \alpha_{0} + \alpha_{Baltic_{1}} U_{Baltic}(t - \tau_{Baltic_{1}}) + \alpha_{Kattgt_{1}} U_{Kattgt}(t - \tau_{Kattgt_{1}}) + \alpha_{Norweg_{1}} U_{Norweg}(t - \tau_{Norweg_{1}}) + \alpha_{Norweg_{2}} V_{Norweg}(t - \tau_{Norweg_{2}})$$
(2)

Hordoir et al. Freshwater outflow of the BS, transport in the NCC

シック・ 川 ・山・山・山・山・

Only based on wind data Based on wind & salinity data

• Reconstruction for year 2000

Hordoir et al. Freshwater outflow of the BS, transport in the NCC

590

E

- Reconstruction for year 2000
- Only 60% of correlation, higher extremes are not well reproduced

イロト イボト イヨト イヨト

590

E

- Reconstruction for year 2000
- Only 60% of correlation, higher extremes are not well reproduced
- Higher extremes correspond to baroclinic transport?

Only based on wind data Based on wind \mathcal{B} salinity data

• We add a baroclinic term $\alpha_{Norweg_3}Sa_{Norweg}(t - \tau_{Norweg_3})$

イロト イボト イヨト イヨ

590

E

Only based on wind data Based on wind & salinity data

- We add a baroclinic term $\alpha_{Norweg_3}Sa_{Norweg}(t \tau_{Norweg_3})$
- Better correlation (70%)

イロト イポト イラト イラ

590

- We add a baroclinic term $\alpha_{Norweg_3}Sa_{Norweg}(t \tau_{Norweg_3})$
- Better correlation (70%)
- Higher extremes are better, but still misses variability

Only based on wind data Based on wind & salinity data

• The power provided by wind can be linearly related with the flux

Hordoir et al. Freshwater outflow of the BS, transport in the NCC

イロト イポト イラト イラ

590

E

Only based on wind data Based on wind & salinity data

- The power provided by wind can be linearly related with the flux
- We add two non-linear terms

イロト イポト イラト イラ

Only based on wind data Based on wind & salinity data

- The power provided by wind can be linearly related with the flux
- We add two non-linear terms
- $P_w \propto V_{Norweg} imes V_{Norweg}$

イロト イポト イヨト イ

Only based on wind data Based on wind & salinity data

- The power provided by wind can be linearly related with the flux
- We add two non-linear terms
- $P_w \propto V_{\it Norweg} imes V_{\it Norweg}$
- $P_w \propto V_{Norweg} imes \delta
 ho$

Only based on wind data Based on wind & salinity data

- The power provided by wind can be linearly related with the flux
- We add two non-linear terms
- $P_w \propto V_{Norweg} imes V_{Norweg}$
- $P_w \propto V_{Norweg} imes \delta
 ho$
- Higher correlation (80%), better reproduction of extremes , a solution is the second second

Hordoir et al.

Freshwater outflow of the BS, transport in the NCC

Outline

- 1 What is the purpose ?
- 2 What is the method
- 3 Reconstruction of the BS outflow
- Reconstruction of the NCC freshwater transport
 Only based on wind data
 Record on wind % collimity data
 - \bullet Based on wind & salinity data

5 Conclusion

イロト イポト イラト イラト

E

• Possible to reconstruct BS freshwater outflow and NCC freshwater transport based on large scale data

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … の Q ()

- Possible to reconstruct BS freshwater outflow and NCC freshwater transport based on large scale data
- However, NCC positive transport requires local salinity measurement (NCC is NOT a pure Kelvin wave)

- Possible to reconstruct BS freshwater outflow and NCC freshwater transport based on large scale data
- However, NCC positive transport requires local salinity measurement (NCC is NOT a pure Kelvin wave)
- BS freshwater outflow is more influence by high frequencies (closed basin ?)

- Possible to reconstruct BS freshwater outflow and NCC freshwater transport based on large scale data
- However, NCC positive transport requires local salinity measurement (NCC is NOT a pure Kelvin wave)
- BS freshwater outflow is more influence by high frequencies (closed basin ?)
- All details in *Hordoir et al., Cont. Shelf Res., May 2013, DOI :* 10.1016/j.csr.2013.05.2006

イロト イボト イヨト イヨト 二日

Sac